
Optimisation of the propulsion chain of an
inflatable drone

Louis BAETENS∗, Pedro GALEB∗
François DEFAY†

∗Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, FRANCE
Email: {louis.baetens,pedro.grueiro-galeb}@student.isae-supaero.fr

†Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, 31055 Toulouse, FRANCE
Email: francois.defay@isae-supaero.fr

Abstract—This project aims to develop an optimization method
for the propulsion chain of a drone, and more particularly the
DIODON, the inflatable drone of the eponymous start-up created
at the ISAE-SUPAERO. The DIODON is already functional,
and can fly for about 15 minutes, which can be improved. To
achieve this goal, the method should find the best components
for a given constrained situation. A computing environment will
be developed, with the requirements that the code should be
readable, scalable, reliable and open-source as much as possible.
It will include the optimization part itself, the database on which
it relies upon, and a graphical interface.

I. GENERAL CONTEXT

Although drones are a relatively recent technological ap-
plication, which is not yet fully regulated, several works and
studies on this subject exist, some of which are devoted to
the study of optimization of the propulsion chain It is easy to
understand the reason, when one takes into account the fact
that the propulsion system contributes to more than 60% of
the drone weight in a general case [1].

The electric propulsion of drones normally consists of the
propeller, the electric motor, the battery, the gearbox, the
connectors and cables, and possibly a cooling system. Most
of the studies and articles related to the subject have a similar
methodology for approaching the problem: they divide the
propulsion system into four parts (motors, propellers, ESC and
batteries). Indeed, even if all the elements are important, the
latter are the most influential on the performance of the drone,
by their mass and their efficiency [1].

The optimization of the chain of propulsion is an non-
trivial process caused by, among other things, the non-linear
characteristics of the propellers [4]. Moreover, the batteries
expose an unwanted behaviour, since the delivered voltage
change depending on the discharge and the time [3]. These two
examples reflect the importance of the details for a software
that modelize a drone, so as to obtain results that are close to
the reality.

One can find various softwares dedicated to the search of
the best combination of motors, propellers, ESC and batteries,
each of these working in a different way and giving different
results.

II. EXISTING COMPUTING ENVIRONMENTS

In order to justify the creation of a new optimization
software, and to take inspiration from the qualities and flaws
of the other existing codes, a state of the art is realized below.
It is obviously non-exhaustive, and only the most relevant are
presented here.

A. DroneCalc [3]
Optimization software created as part of an End-of-Studies

Project at the ISAE-SUPAERO, it relies on a exhaustive and
large database. The user inputs the boundary values for the
drone mass, the diameter of the propellers, and the necessary
flight conditions. In output, it retrieves a ranking of the best
propeller-motor pairs. Its execution time, of the order of the
hour because of its exhaustiveness and its architecture, is
problematic. In addition, it uses different databases, which
are not necessarily reliable nor harmonised. Finally, its code
is not very readable, and therefore difficult to maintain and
improve. These shortcomings leaded to the decision that the
development of this code will not be continued for this project.

B. eCalc [5]
One of the most used online softwares. It gives the possibil-

ity of optimizing the propulsion chain of a multirotor or a fixed
wing drone. The input parameters are numerous, and based on
the boundaries that one wishes to impose on each component.
Its main problem lies in the fact that its code is not accessible
and, despite its speed of execution, it is complicated to verify
the given results. Also, one can not access the used database,
which means that the reliability is not assured.

C. TetaCalc [6]
This software is actually an Excel sheet. It is rather oriented

towards fixed-wing drones. It is based on several modules,
including the geometry of the drone, its propulsion, and the
aerodynamic block. Its database is open and modifiable, and
based on experimental data. This is therefore positive, since it
is developed for the purpose of use in a real and practical case.
However, it is rather obscure at first sight, and not necessarily
adapted to the case of a multirotor like the DIODON. In
addition, it seems impossible to optimize for several flight
points simultaneously.



III. REQUIREMENTS

In the light of the above softwares, and their respective
defects, it has been decided to start from scratch. Before
starting the project, the requirements for it had to be decided.

Concerning the global goals:
• The computing environment needs to be easy to use and

to modify if needed
• It has to provide accurate results
• The execution time of the optimization process should be

small enough
• All the parts of the projects should be readable and quite

easy to understand
• If possible, the project will be developed with open-

source tools only, to maximise the number of users and
contributors

It leads to the need for a user interface and a database. The
user interface should be an improvement of the DroneCalc
one, therefore its requirements are:

• The UI will be clear and with sufficient explanation
• The units should be stated clearly
• The navigation between the different parts of the program

needs to be easy and intuitive
Concerning the database, the needs are stated below:
• The structure has to be clear for the user
• Possibility has to be given to add new data easily, but

consistently. The units should be the same, and it should
not be possible to add incomplete components.

• Quick search must be possible
• The existing data must be easily accessible

IV. DEVELOPED SOLUTION

For the new software, three distinct parts have been iden-
tified: the user interface, the database management, and the
optimization part itself. The last part is treated by Daniel
Barraza, thus it is not mentioned here. In the following, the
new software is called PyDroneCalc, as it is developed in
Python. Python has been chosen as it is more convenient:
it posses lots of libraries, it is open-source and free, thus it
matches with the requirements stated above, more than Matlab
for example.

A. Graphical User Interface

The main idea of the creation of a Graphical User Interface
is to create an easy way, for users who are not familiar with the
world of engineering and especially programming, to explore
all the functions in the code. In addition, knowing that the
program can be modified in the future by adding new functions
or correcting some errors, it must have a readable code to make
life easier for future developers.

The interface is also intended to integrate the optimization
part and the database part. All this is done while keeping in
mind the mentioned goals, readability and easy understanding
for users who are not necessarily experts in this area.

Firstly, an interface inspired by DroneCalc was created, with
the same options and the same sequence of steps to start the

optimization. However, this model was not compatible with
PyDroneCalc, which despite having a similar name and a
similar objective, are two extremely different codes. Therefore
a new logic of interfaces and steps until the end of the
optimization had to be created and adapted to the functions
treated by Daniel Barraza, with all the possibilities created in
the database part.

a. Graphical User Interface structure
The current version of the Graphical User Interface consists

of 10 classes, 7 different interfaces, 2 sub interfaces for the
addition of 2 more operating points and an executable class
for the program to be started.

The diagram below shows in simplified form how the
relationship between the classes works.

Fig. 1. Simple operation schema of the Graphical User Interface

The mainmenu.py, presents a short project presentation text,
followed by a menu with the functions that may be interesting
for the user.

The classes addbattery.py, addmotor.py and addpropeller.py
are only dependent on mainmenu.py, and work very similarly:
the user complete a registration form with the information
pertinent to the item (name, company, weight, ...) and auto-
matically the item and all its characteristics are added to the
database. The class addpropeller.py also includes a last step
of adding a csv formatted file with the curves of the propeller,
which will be treated in the database.

The class setdatabase.py (see figure 2) is about adjusting
the database for the user’s requirements. He can impose one
or more items such as the propeller, or create a sub database

Page 2 of 6



Fig. 2. Window generated by setdatabase.py

based on the properties range (weight, diameter, ...). The same
procedure can be done for the battery and motor. This interface
also includes the option of deleting items from the databases.
When an item is deleted from the database it is automatically
deleted from all the sub-databases in which it is present.

The classes optimizefixed.py and optimizedrone.py (see
figure 3) are the last step before starting the optimization.
The user chooses the most interesting sub-database for his
requirements, and gives the operating point information (addi-
tional operating points can be added through the subinterfaces
operatingpoint2.py and operatingpoint3.py).

Fig. 3. Window generated by optimizedrone.py

b. Python codes
There are several GUI Programming toolkits for Python,

however for this software the choice was Tkinter. Despite
the various positive points presented by the others toolkit,
Tkinter was chosen due to its versatility, being compatible with
Windows and Macintosh systems, the fact that the installation
of the basic Python package already includes Tkinter and
it also offers a vast online documentation in English with
several examples and applications, making life easier for
programmers.

To summarize, Tkinter consists of a number of modules.
The Tk interface is provided by a binary extension module

named Tkinter. This module contains the low-level interface
to Tk, and should never be used directly by application
programmers.

All classes created during the code are initialised creating a
Tk root widget by the sentence root = Tk(). A root widget is
an ordinary window where the others widgets will be placed. It
is important to create only one root widget for each program,
that is why every time a change of interface is needed, the
previous interface root widget is destroyed.

In the code several widgets were used, such as Button,
Frame, Label, Scrollbar among others. The placement methods
used in it were always .grid(), with rare exceptions in which-
pack() was necessary. The recommendation often found in
online documentation of not mixing the .grid() method and the
.pack() method to avoid positioning conflicts has always been
respected, and is recommended for the future development of
this software.

c. Articulation
It is important to remember that in this project the graphic

interfaces played an important role related to the assembly and
operation of the optimization code and the database codes.
More than a simple dialogue between the user and the code,
they also make a dialogue between the other code’s parts.

That is why it is very important to have clarity in the nomen-
clature of variables and to maintain consistency throughout the
program, in order to avoid problems. As the code presents a
considerable number of variables that may or may not be used
in different situations, this coherence is fundamental.

d. Easy to use and to modify
The interfaces were created and ordered in order to be

more intuitive for users, they all have a small button with
a [?] symbol in the upper right corner to inform or answer
the possible questions that the user could have. For the same
purpose, the order of the interfaces and the way the input
parameters are requested are also designed to facilitate the
use.

In addition every time the user enters absurd values or leaves
some mandatory field empty during the addition of items to

Page 3 of 6



the database, messages are sent to him saying what error was
committed and directing what to do to correct the error. Still
regarding the consistency at the level of user data entry, all
relevant fields inform in which units the data should be sent
to have coherent results.

In order to simplify possible changes that the graphic
interfaces can receive, the code presents several comments
indicating what the lines of code generate in the interface. All
the variables and widgets created have a name that briefly ex-
plain what the variable represents, this facilitates the creation
of functions that deal with the values received and will also
be of great help to anyone who will generate changes in the
interface. Besides all the buttons present functions created in
the final part of the class, the functions also present comments
quickly explaining its objective and how it works.

As English is the most common language for occidental
people, all interfaces, comments, and error messages or infor-
mation messages were written in English so that the program
reaches the largest number of possible users.

B. Database

As stated previously, the various data present in DroneCalc
are in many files, their formatting differ, and it is difficult
to add new data. Therefore, the data structure has been
redesigned.

It has been decided to implement a database that is exploited
with SQL. To stay with the open-source philosophy, MySQL
has been chosen for the relational database management
system. Finally, the library pymysql is used to make the link
between the database requests and Python.

In fact, three databases are created: one for the batteries,
one for the motors, and one for the propellers. The idea
is that it is possible to add other databases based on their
structure, in following projects that aim to improve this version
of PyDroneCalc. For example, one could add an ESC database,
or one for the electrical wires.

Each database is composed of several Tables.
a. Database structure
The structure is one of the most important part of any

database, and has to be thought thoroughly. Concerning the
motors and batteries databases (called MOTORS db and BAT-
TERIES db), it was quite simple. The main table (‘Motors’
or ‘Batteries’) contains the name of the component, and its
various properties (see figures 4 and 5 for the details).

Then, the user should be able to select some of the
components that he wants to use for his optimization. This
selection can be made in two different ways: he can either
select directly the names of the components in a list (see the
GUI for the example), or impose a range for the properties
(weight, capacity, kv, and so on). Once he selected the desired
components, the output has to be stored in a permanent
manner, such that if he wants to realise another optimization
with the same components, he can do it quickly. Therefore,
the database structure is such that new tables can be created,
with only an id (which is auto-incremented) and the names
of the components. Those tables (referred by ‘BatDiodon’,

‘Bat1’, ‘Bat2’, in figure 5) were designed such that the user
can create many tables without taking too much space, and all
the components properties are stored in the main table.

id name

1 AXI 2203/40VPP GOLD LINE

… …

12 AXI 5330/F3A GOLD LINE

15 Sunnysky x2212 kv980

Motors (Main)

MotDiodon

foreign key

...
id name

1 name8

2 name9

… …

id name

1 name2

2 name1

… …

Mot1 Mot2

id name company weight kv i0 resistance comments

1 AXI 2203/40VPP GOLD LINE NULL 17.5 2000 0.5 0.245 9 2 7.5 75 NULL

2 AXI 2203/46 GOLD LINE NULL 18.5 1720 0.5 0.285 8.5 2 7 75 NULL

3 AXI 2203/52 GOLD LINE NULL 18.5 1525 0.4 0.39 7 2 5.5 74 NULL

… … … … … … … … … … … …

51 AXI 5330/F3A GOLD LINE NULL 652 235 1.8 0.045 75 10 57 91 NULL

53 Sunnysky x2212 kv980 Sunnysky 56 980 1 0.1 22 3 22 97 NULL

I
max

n
cells

i_nom_
max

Efficiency
max

Fig. 4. MOTORS db database

id name

1 Tattu 8000mAh 11.1V 15C 3S Lipo

… …

7 Turningy 5000mAh 3S 20C Lipo

9 Turningy 5000mAh 3S 20C Lipo

Batteries (Main)

BatDiodon

foreign key

...
id name

1 name1

2 name5

… …

id name

1 name5

2 name7

… …

Bat1 Bat2

id name company weight capacity config discharge comments

1 1000mAh 11.1V 20C 3S NULL 56 1000 3 20 NULL

2 1000mAh 11.1V 25C 3S NULL 56 1000 3 25 NULL

… … … … … … … …

96 Duratrax Onyx LiPo 3S 11.1V 5000mAh 25C S NULL 383 5000 3 25 NULL

97 Duratrax Onyx LiPo 3S 11.1V 6400mAh 25C S NULL 497 6400 3 25 NULL

98 Duratrax Onyx LiPo 3S 11.1V 6400mAh 25C T NULL 497 6400 3 25 NULL

Fig. 5. BATTERIES db database

Concerning the propellers database PROPELLERS db, it
is a bit more complicated. Indeed, propellers have scalar
properties, such as the weight or the diameter, but also some
others that should be stored in a vector fashion, such as the
tuples [rpm, speed, thrust, power], that correspond to different
operating points. Therefore, the most efficient structure that
has been found is the one exposed in figure 6. The main
table ‘Propellers’ is like the one for the motors and batteries.
Another table, called ‘Dim prop data’, stores the vectors. It
is therefore a large table, containing all the operating points
of all the propellers. The link between the two tables is made
by the name of the propeller. As before, subtables with only
the names of the propellers can be created (see figure 6). This
organisation allows the requests to be efficient.

b. Unicity and validity constraints
To make the databases more robust, constraints need to be

set. First of all, apart for the table ‘Dim prop data’, the name
in each table is unique, such that it is impossible to add another
component with the same name but different properties. For
the ‘Dim prop data’ table, the uniqueness is ensured by the
tuple [name, rpm, v], which means that for a propeller, only
one couple rpm/speed can exist. Indeed, for this couple, only
one thrust and power can be deduced.

Page 4 of 6



id name rpm v t p eta

1 gwsdd_5x4.3 4046 0 0.173 0.756 NULL

2 gwsdd_5x4.3 4046 1.186 0.154 0.748 NULL

3 gwsdd_5x4.3 4046 1.77 0.138 0.709 NULL

4 gwsdd_5x4.3 4046 2.382 0.122 0.674 NULL

… … … … … … …

6997 grcp_9x4 10536 14.83208224 2.571814154 68.38397422 NULL

6998 grcp_9x4 10536 15.64531445 2.307669072 64.95529453 NULL

6999 grcp_9x4 10536 16.53523939 1.975210606 61.32637269 NULL

… … … … … … …

19999 apcsp_11x3 6415 14.787 -0.258 18.937 NULL

20000 apcsp_11x3 7057 0 6.056465054 68.08043518 NULL

20001 apcsp_11x3 7057 2.241566217 5.484602644 68.11376917 NULL

20002 apcsp_11x3 7057 3.086639944 5.21556189 67.87199022 NULL

id name

1 blueBig_10x4.5

2 foldableBlack_10x4.7

… …

4 graupner3Blades_10x4.5

5 graupner4Blades_10x4.5

Propellers (Main)

PropDiodon

Dim_prop_data

...

foreign keyforeign key

id name

1 name1

2 name2

… …

id name

1 name6

2 name4

… …

Prop1 Prop2

id name constructor weight diameter pitch comments

1 gwsdd_5x4.3 UIUC NULL 5 4.3 NULL

2 gwsdd_2.5x0.8 UIUC NULL 2.5 0.8 NULL

3 magf_11x5 UIUC NULL 11 5 NULL

4 mas_9x5 UIUC NULL 9 5 NULL

… … … … … … …

197 graupner2Blades_10x5 NULL 11 10 5 NULL

198 graupner3Blades_10x4.5 NULL 12 10 4.5 NULL

199 graupner4Blades_10x4.5 NULL 15 10 4.5 NULL

Fig. 6. PROPELLERS db database

As the name is unique, it seems natural to make the
link between the tables from it. It is done by the so-called
‘foreign keys’. They assure that the names in the non-main
tables already exist in the main tables, and are therefore
valid. Furthermore, this allow to delete all the references to a
component just by deleting the corresponding row in the main
table, without to do it in all the tables.

In the requirements, it is stated that the user should not
add components with incomplete data. Therefore, for each
database, some of the columns can not be left empty in the
main table. For the BATTERIES db, in the table Batteries,
it concerns the fields name, weight, capacity, config and dis-
charge. For the MOTORS db, in the table Motors, it concerns
the fields name, weight, kv, i0 and n cells. For the PRO-
PELLERS db, in the table Propellers, it concerns the fields
name, diameter and pitch; and in the table Dim prop data the
fields name, v, t, p (t and p being in reality T/ρ and P/ρ)

c. Python codes
Then, various code have been developed in Python. The

idea here, is that the user does not need to know any of
the SQL syntax to interact with the database. He just has
to call a Python function, with the required inputs, and the
desired outputs or modifications will be produced. However,
minimum knowledge in SQL are required if the project has
to be continued. The functions are made in a way that the
graphical interface can use them easily.

The following codes were produced. Only a short descrip-
tion of them is given here, as many comments are written in
the corresponding files.

database manipulation.py allows the user to connect to
MySQL. It can be used to use, restore, save or delete a
database.

table manipulation.py is the largest code. It has many
functions in it. Among them, we can cite the creation of
the different tables with their description and constraints,
the selection of the data by specifying property ranges, the

creation of subtables from the names of the components, the
addition of a component to a database, and other functions
linked to the manipulation of the tables with SQL.

plot characteristics.py is called to plot the characteristics
curves of the propellers. It can take the name of a propeller,
fetch the needed data, and plot them.

save display data.py is used to display the properties of the
components in a pretty fashion. The user specify the name of
the database, and it produces a text file with the columns as
displayed by a SQL query. The text file is then open, such
that the functions of this code can be called directly from the
GUI.

C. Expanding the database

For the motors and the batteries, databases can be found
on the internet. Their trustworthiness can vary, but even
the constructors give the specifications. For the propellers
however, it is much more difficult. The diameter and pitch
can be found on the constructors website, but the curves can
not (or are obviously skewed). A good database is the UIUC
one [2], that has been validated by a comparison with a study
from the Ohio State University (see [3] for more information).
Therefore, its data have been put into the PROPELLERS db.

DIODON wanted to test some other propellers they could
set on their drones. Therefore, they had been put on the test
bench. However, this test bench can only provide the static
setup, so their data is incomplete. The results are plotted in
figures 7 and 8.

The blueBig is a standard propeller, used as a reference.
The four others are foldable ones. The Graupner have two,
three or four blades. In figure 7, the standard representation
of the propellers curves is given. One can observe that their
behaviour is coherent with what can be expected. However, it
is more useful to compare their ‘efficiency’. As the definition
of the dynamic efficiency fails for the static case (the efficiency
is null), one can redefine the static efficiency as being propor-
tional to the thrust per unit power. Thus, the thrust versus

Page 5 of 6



2000 3000 4000 5000 6000 7000
RPM [tr/min]

0

1

2

3

4
T/
ρ[
N
.m

3 /k
g]

Thrust
blueBig_10x4.5
foldableBlack_10x4.7
graupner2Blades_10x5
graupner3Blades_10x4.5
graupner4Blades_10x4.5

2000 3000 4000 5000 6000 7000
RPM [tr/min]

0

20

40

60

80

100

P/
ρ[
W
.m

3 /k
g]

Power
blueBig_10x4.5
foldableBlack_10x4.7
graupner2Blades_10x5
graupner3Blades_10x4.5
graupner4Blades_10x4.5

Fig. 7. Characteristic curves for the propellers

0 20 40 60 80 100
P/ρ[W.m3/kg]

0

1

2

3

4

T/
ρ[
N
.m

3 /k
g]

Thrust versus Power
blueBig_10x4.5
foldableBlack_10x4.7
graupner2Blades_10x5
graupner3Blades_10x4.5
graupner4Blades_10x4.5

Fig. 8. Comparison between the tested propellers in the static case

the power is plotted in figure 8. One can observe that the
most efficient one is the Graupner with two blades, but all of
them are pretty close. Therefore, for the static case, it does
not make sense for the DIODON to give preference to one of
these propellers based on the efficiency defined above.

As the optimization part of this project is not finished yet,
the best components for the DIODON can not be deduced at
the time of writing.

V. FUTURE DEVELOPMENT

This project lays the foundations for a promising computing
environment. All the tasks could not been tackled in the
allocated time, thus the authors see different ways that could
improve the software.

More functions could be implemented. In particular, the
controllability of the drone even with the loss of a motor can
be added as an optimization constraint. The wind conditions
and the inclination of the drone regarding the horizontal could
also be taken into account.

The database has to be expanded. More propellers could
be added, but for that one needs a good test bench, possibly
with a wind tunnel. The batteries should be tested, and their
discharge curve could be taken into account in the program.
The motors performances could also be tested, and their curves
used to obtain a more realistic approach than just a linear
representation. For this matter, the database structure could be
inspired from the one for the propellers.

The database could be put on a server, such that different
users would be able to access it and modify it.

The price of the components could be set as a limiting
factor, or as a constraint.

As the user interface should be easy to use, but also look
neat, one could try to make it less bulky and more appealing.
Other fonts could be tried, the colours changed, and the general
appearance improved.

Knowing that the code of optimisation now takes into ac-
count the role of ESC, an ESC database could be implemented
and showed in the interface as it is already done with the
batteries, propellers and motors.

All those suggestions and ideas are proposed in the hope
that this software will be improved in the future, keeping in
mind that some of them could be achieved quickly, and some
others not.

ACKNOWLEDGMENT

The authors would like to thank Francois DEFAY for his
availability and his advice, Jean-Francois DASSIEU for his
help with the test bench, Roman LUCIANI and Antoine
TOURNET for their clarifications on the constitution and
operation of a drone, and Christophe GARION for his advice
on the databases.

REFERENCES

[1] Ohad Gur and Aviv Rosen. Optimizing electric propulsion systems for
unmanned aerial vehicles. Journal of aircraft, 46(4):1340–1353, 2009.

[2] Gavin K. Ananda John B. Brandt, Robert W. Deters and Michael S.
Selig (University of Illinois Urbana-Champaign). Uiuc propeller data
site, http://m-selig.ae.illinois.edu/props/propdb.html. 2015.

[3] Victor Lebrun. Optimisation de la chaı̂ne de propulsion d’un drone avion
ou vtol. 2015.

[4] Øyvind Magnussen. Multirotor design optimization: The mechatronic
approach. 2015.

[5] Markus Müller. ecalc, www.ecalc.ch.
[6] Guillaume Rouby. Tetacalc, www.aerotrash.over-blog.com.

Page 6 of 6


	General context
	Existing computing environments
	DroneCalc Victor2015Optimisation
	eCalc eCalc
	TetaCalc TetaCalc

	Requirements
	Developed solution
	Graphical User Interface
	Database
	Expanding the database

	Future development
	References

