Constraints for the physical layer and RF equipment » History » Version 1

AUGER, Anne sophie, 03/23/2015 04:16 PM

1 1 AUGER, Anne sophie
h1. Constraints for the physical layer and RF equipment
2 1 AUGER, Anne sophie
3 1 AUGER, Anne sophie
h2. Constraints for the physical layer and RF equipment:
4 1 AUGER, Anne sophie
5 1 AUGER, Anne sophie
6 1 AUGER, Anne sophie
(calcul Rb)
7 1 AUGER, Anne sophie
8 1 AUGER, Anne sophie
9 1 AUGER, Anne sophie
From the given allocated frequency band, the following parameters are defined:
10 1 AUGER, Anne sophie
* f : Central frequency of the emitted signal
11 1 AUGER, Anne sophie
* B: Larger of the allocated bandwidth
12 1 AUGER, Anne sophie
* EIRP: Maximum power that can be emitted in a given direction 
13 1 AUGER, Anne sophie
14 1 AUGER, Anne sophie
From the specifications, the following parameters are defined:
15 1 AUGER, Anne sophie
* Rb: Useful bit rate of the transmission
16 1 AUGER, Anne sophie
* R : Minimal distance for the transmission
17 1 AUGER, Anne sophie
18 1 AUGER, Anne sophie
The value of these parameters constrain the parameters of the physical layer and the RF equipment for the design of the system.
19 1 AUGER, Anne sophie
20 1 AUGER, Anne sophie
21 1 AUGER, Anne sophie
h3. Physical layer:
22 1 AUGER, Anne sophie
23 1 AUGER, Anne sophie
The study of the physical layer will be limited to the choice of the modulation, the coding and the shaping filter. We will consider a SRRC filter (Square Root Raised Cosine) for the shaping filter as it is commonly used in telecommunication systems for its good performances. 
24 1 AUGER, Anne sophie
25 1 AUGER, Anne sophie
Then, the parameters of the physical layer are:
26 1 AUGER, Anne sophie
* M : Modulation (M=4 : QPSK, M=8 : 8PSK etc)
27 1 AUGER, Anne sophie
* rho : Coding rate (rho <1)
28 1 AUGER, Anne sophie
* alpha : roll-off of the SRRC filter
29 1 AUGER, Anne sophie
30 1 AUGER, Anne sophie
In fact all these parameters are linked through the spectral efficiency T of the system, which is fixed by B and Rb:
31 1 AUGER, Anne sophie
32 1 AUGER, Anne sophie
T= cst  et  T=
33 1 AUGER, Anne sophie
34 1 AUGER, Anne sophie
Then, the parameters of the physical have to comply with the following relation:
35 1 AUGER, Anne sophie
36 1 AUGER, Anne sophie
T>cst
37 1 AUGER, Anne sophie
38 1 AUGER, Anne sophie
39 1 AUGER, Anne sophie
40 1 AUGER, Anne sophie
h3. Link budget:
41 1 AUGER, Anne sophie
42 1 AUGER, Anne sophie
Here is the expression of the link budget:
43 1 AUGER, Anne sophie
44 1 AUGER, Anne sophie
(link budget)
45 1 AUGER, Anne sophie
46 1 AUGER, Anne sophie
We can notice that all the parameters are already known, except:
47 1 AUGER, Anne sophie
* (G/T): Figure of merit of the receiver (ISAE antenna)
48 1 AUGER, Anne sophie
* Lmarg: Margin on the link budget to take into account all the perturbations (antenna   
49 1 AUGER, Anne sophie
depointing, atmosphere attenuation, interferences, non-ideal demodulator …)
50 1 AUGER, Anne sophie
51 1 AUGER, Anne sophie
Lmarg being only linked to physical parameters, we don’t have any influence on it. Then, it has to be evaluated but it is not really a parameter of the design.
52 1 AUGER, Anne sophie
53 1 AUGER, Anne sophie
Power amplifier
54 1 AUGER, Anne sophie
55 1 AUGER, Anne sophie
56 1 AUGER, Anne sophie
h2. Conclusion:
57 1 AUGER, Anne sophie
58 1 AUGER, Anne sophie
From these considerations, our aim will be to:
59 1 AUGER, Anne sophie
* Choose the modulation and the coding (according to the shaping filter)
60 1 AUGER, Anne sophie
* Compute the gain of the receiving antenna
61 1 AUGER, Anne sophie
* Propose some technical solution for the receiving antenna
62 1 AUGER, Anne sophie
63 1 AUGER, Anne sophie
We will also develop tools to visualize the influence of the bandwidth, EIRP, useful bit rate and distance on the system design.
64 1 AUGER, Anne sophie
65 1 AUGER, Anne sophie
The aircraft antenna will be considered able to fulfil the required antenna pattern, but we will not discuss about technical solutions for this antenna, as it can be really tricky.