// Copyright (c) CNES 2008 // // This software is part of CelestLab, a CNES toolbox for Scilab // // This software is governed by the CeCILL license under French law and // abiding by the rules of distribution of free software. You can use, // modify and/ or redistribute the software under the terms of the CeCILL // license as circulated by CEA, CNRS and INRIA at the following URL // 'http://www.cecill.info'. function [M] = CL_fr_tnwMat(pos_car,vel_car) // Inertial frame to "tnw" local orbital frame transformation matrix // // Calling Sequence // M = CL_fr_tnwMat(pos_car,vel_car) // // Description // //

Computes the frame transformation matrix M from the // inertial reference frame to the "tnw" local orbital frame.

//

The inertial frame is implicitly the frame relative to which the satellite's position and velocity are defined. The "tnw" local frame is built using these position and velocity vectors.

//

By convention, M multiplied by coordinates relative to the inertial frame yields coordinates relative to the "tnw" frame.

//

// //

See Local frames for more details on the definition of local frames.

//
//
// // Parameters // pos_car: satellite's position relative to the inertial frame [m] (3xN) // vel_car: satellite's velocity relative to the inertial frame [m/s] (3xN) // M : inertial frame to "tnw" local frame transformation matrix (3x3xN) // // Bibliography // 1) Mecanique spatiale, CNES - Cepadues 1995, Tome I, section 10.2.2.3 (Definition du Repere orbital local) // 2) CNES - MSLIB FORTRAN 90, Volume O (mo_def_tnw) // // Authors // CNES - DCT/SB // // See also // CL_fr_qsw2inertial // CL_fr_inertial2qsw // CL_fr_qswMat // CL_fr_inertial2tnw // CL_fr_tnw2inertial // // Examples // // Inertial to "tnw" : // pos_car = [[3500.e3; 2500.e3; 5800.e3], [4500.e3; 2100.e3; 6800.e3]]; // vel_car = [[1.e3; 3.e3; 7.e3], [2.e3; 3.e3; 6.e3]]; // M = CL_fr_tnwMat(pos_car, vel_car) // pos_tnw = M * pos_car; // Declarations: // Code: [lhs,rhs] = argn(); if (rhs <> 2) CL__error("Invalid number of input arguments"); end N = size(pos_car,2); //vector t, tangent to velocity vector t = CL_unitVector(vel_car) //CL_cross product pos_car^vel w0 = CL_cross(pos_car,vel_car) //vector w, giving direction of angular momentum vector (perpendicular to the osculating orbit plane) w = CL_unitVector(w0) //CL_cross product: n = w^t n = CL_cross(w,t) // Matrix M : M = hypermat([3 3 N] , [t(1,:); n(1,:); w(1,:); ... t(2,:); n(2,:); w(2,:); ... t(3,:); n(3,:); w(3,:)]); if(N == 1) M = M(:,:,1); end endfunction