// Copyright (c) CNES 2008 // // This software is part of CelestLab, a CNES toolbox for Scilab // // This software is governed by the CeCILL license under French law and // abiding by the rules of distribution of free software. You can use, // modify and/ or redistribute the software under the terms of the CeCILL // license as circulated by CEA, CNRS and INRIA at the following URL // 'http://www.cecill.info'. function [pos,vel,jacob] = CL_oe_cir2car(cir, mu) // Circular to cartesian orbital elements // // Calling Sequence // [pos,vel,jacob] = CL_oe_cir2car(cir [,mu]) // // Description // //

Converts orbital elements adapted to near-circular orbits to // cartesian orbital elements.

//

The transformation jacobian is optionally computed.

//

See Orbital elements for more details.

//

//
// // Parameters // cir: Orbital elements adapted to near-circular orbits [sma;ex;ey;inc;gom;pso] [m,rad] (6xN) // mu : (optional) Gravitational constant. [m^3/s^2] (default value is %CL_mu) // pos: Position vector [x;y;z] [m] (3xN) // vel: Velocity vector [vx;vy;vz] [m/s] (3xN) // jacob: (optional) Transformation jacobian (See Orbital elements for more details) (6x6xN) // // Authors // CNES - DCT/SB // // See also // CL_oe_car2cir // CL_oe_cir2kep // // Examples // // // Example 1 // cir = [7000.e3; 0.1; 0.2; 1; 2; 3]; // [pos, vel] = CL_oe_cir2car(cir); // // // Example 2 // cir = [7000.e3; 0.1; 0.2; 1; 2; 3]; // [pos, vel, jacob1] = CL_oe_cir2car(cir); // [cir2, jacob2] = CL_oe_car2cir(pos, vel); // cir2 - cir // => zero // jacob2 * jacob1 // => identity // Declarations: EPS_ORB = CL__dataGetEnv("epsOrb", internal=%t); // Code: if (~exists("mu", "local")); mu = CL__dataGetEnv("mu"); end // Handle [] cases if (cir == []) pos = []; vel = []; jacob = []; return; end // Check validity of input [isvalid,type_orbit] = CL__oe_isValid("cir",cir); if (~isvalid); CL__error("Invalid orbital elements"); end; if (find(type_orbit <> 1) <> []); CL__error("Invalid orbital elements (parabolic or hyperbolic orbit)"); end; a = cir(1,:); ex = cir(2,:); ey = cir(3,:); // F = w+E = eccentric argument of latitude F = CL_kp_M2Ecir(ex,ey,cir(6,:)); cosF = cos(F); sinF = sin(F); // Other needed quantities r = a .* (1 - ex.*cosF - ey.*sinF); n = sqrt(mu ./ a.^3); nu = 1 ./ (1 + sqrt(1 - ex.^2 - ey.^2)); // nu = 1/(1+sqrt(1-e^2)) // Position and velocity in "natural" frame R X = a .* ((1-nu.*ey.^2).*cosF + nu.*ex.*ey.*sinF - ex); Y = a .* ((1-nu.*ex.^2).*sinF + nu.*ex.*ey.*cosF - ey); VX = n.*a.^2 ./ r .* (cosF .* nu .* ex .* ey + sinF .* (nu .* ey.^2 - 1)); VY = n.*a.^2 ./ r .* (-sinF .* nu .* ex .* ey - cosF .* (nu .* ex.^2 - 1)); // Position and velocity in cartesian frame // NB: This code is simpler but slower: // R = R3(-gom)*R1(-i) // R = CL_rot_angles2matrix([1,3],[-cir(4,:);-cir(5,:)]); // pos = R * [X;Y;0]; // vel = R * [VX;VY;0]; // Using direct formulas is the fastest way to compute matrix R: cg = cos(cir(5,:)); sg = sin(cir(5,:)); ci = cos(cir(4,:)); si = sin(cir(4,:)); // P = first column of matrix R // Q = second column of matrix R P = [cg; sg; zeros(cg)]; Q = [-sg.*ci; cg.*ci; si]; pos = CL_dMult(P,X) + CL_dMult(Q,Y); vel = CL_dMult(P,VX) + CL_dMult(Q,VY); // Jacobian computation (dcar/dcir) jacob = []; if (argn(1) == 3) // jacob(i,j) = d(car_i)/d(cir_j) N = size(cir,2); jacob = zeros(6,6,N); // d(x,y,z,vx,vy,vz)/da jacob(:,1,:) = CL_dMult(1 ./ a, [pos;-vel/2]) ; // Partial derivatives of Y,Y,VX,VY with respect to ex: eta = sqrt(1 - ex.^2 - ey.^2); dXdex = ey ./ (n .* (1+eta)) .* VX + Y.*VX./(n.*a.*eta) - a; dYdex = ey ./ (n .* (1+eta)) .* VY - X.*VX./(n.*a.*eta); dVXdex = VX.*VY./(n.*a.*eta) - n.*a.^2 ./ r.^3 .* (a.*ey./(1+eta).*X + X.*Y./eta); dVYdex = -VX.*VX./(n.*a.*eta) - n.*a.^2 ./ r.^3 .* (a.*ey./(1+eta).*Y - X.*X./eta); // Partial derivatives of Y,Y,VX,VY with respect to ey: dXdey = -ex ./ (n .* (1+eta)) .* VX + Y.*VY./(n.*a.*eta); dYdey = -ex ./ (n .* (1+eta)) .* VY - X.*VY./(n.*a.*eta) - a; dVXdey = VY.*VY./(n.*a.*eta) + n.*a.^2 ./ r.^3 .* (a.*ex./(1+eta).*X - Y.*Y./eta); dVYdey = -VX.*VY./(n.*a.*eta) + n.*a.^2 ./ r.^3 .* (a.*ex./(1+eta).*Y + X.*Y./eta); // Apply the same matrix R as before: // d(x,y,z,vx,vy,vz)/dex jacob(:,2,:) = [CL_dMult(P,dXdex) + CL_dMult(Q,dYdex) ; ... CL_dMult(P,dVXdex) + CL_dMult(Q,dVYdex)] ; // d(x,y,z,vx,vy,vz)/dey jacob(:,3,:) = [CL_dMult(P,dXdey) + CL_dMult(Q,dYdey) ; ... CL_dMult(P,dVXdey) + CL_dMult(Q,dVYdey)] ; // d(x,y,z,vx,vy,vz)/dalpha jacob(:,6,:) = [ CL_dMult(1 ./ n, vel) ; ... CL_dMult(-n .* a.^3 ./ r.^3, pos) ] ; // The partial derivatives with respect to i,gom // are computed by differianting the matrix R // Pi,Pg = first column of matrix R differentiated with respect to i,gom // Qi,Qg = second column of matrix R differentiated with respect to i,gom // Pi = 0; = Qi = [sg.*si; -cg.*si; ci]; Pg = [-sg; cg; zeros(cg)]; Qg = [-cg.*ci; -sg.*ci; zeros(cg)]; // d(x,y,z,vx,vy,vz)/di jacob(:,4,:) = [CL_dMult(Qi,Y) ; ... CL_dMult(Qi,VY)] ; // d(x,y,z,vx,vy,vz)/dgom jacob(:,5,:) = [CL_dMult(Pg,X) + CL_dMult(Qg,Y) ; ... CL_dMult(Pg,VX) + CL_dMult(Qg,VY)] ; end endfunction