// Copyright (c) CNES 2008 // // This software is part of CelestLab, a CNES toolbox for Scilab // // This software is governed by the CeCILL license under French law and // abiding by the rules of distribution of free software. You can use, // modify and/ or redistribute the software under the terms of the CeCILL // license as circulated by CEA, CNRS and INRIA at the following URL // 'http://www.cecill.info'. function [equi,equip] = CL_mod_equinoxesEquation(dPsi,eps0,F5, dPsip,eps0p,F5p) // Equation of the equinoxes (IERS 1996) - DEPRECATED // // Calling Sequence // [equi,equip] = CL_mod_equinoxesEquation(dPsi,eps0,F5 [,dPsip,eps0p,F5p]) // // Description // //

This function is deprecated.

//

// //

Computes equation of the equinoxes: Greenwich sideral time - Mean Greenwich sideral time (standard IERS 1996)

//
//
// // Parameters // dPsi: longitude (see CL_mod_nutationAngles) [rad](1xN) // dPsip: (optional with eps0p and F5p) longitude first time derivative (see CL_mod_nutationAngles) [rad/s] (1xN) // eps0: mean obliquity (see CL_mod_meanObliquity) [rad] (1xN) // eps0p: (optional with dPsip and F5p) mean obliquity first time derivative (see CL_mod_meanObliquity) [rad/s] (1xN) // F5: Mean longitude of Moon's ascending node (see CL_mod_nutationArg) [rad] (1xN) // F5p: (optional with eps0p and dPsip) Mean longitude of Moon's ascending node first time derivative (see CL_mod_nutationArg) [rad/s] (1xN) // equi: equinoxes equation (1xN) // equip: (optional, needs dPsip, eps0p and F5p) first time derivative of equi (1xN) // // Authors // CNES - DCT/SB // // Bibliography // 1) IERS Conventions (1996), Dennis D. McCarthy // 2) Explanatory Supplement to the Astronomical Almanac, Seidelman (1992) // // See also // CL_mod_nutationAngles // CL_mod_nutationArg // CL_mod_meanObliquity // // Examples // jj_tai = [19500:1:20500]; // ss_tai = 43200*ones(jj_tai); // // Nutation angles (dPsi,dEps) : // [NUT,F,NUTP,FP,NUTPP,FPP]=CL_mod_nutationAngles(jj_tai,ss_tai,"s"); // // // Mean obliquity : // [eps0,eps0p,eps0pp]=CL_mod_meanObliquity(jj_tai,ss_tai,"s"); // // // Equinoxes equation : // [equi,equip]=CL_mod_equinoxesEquation(NUT(1,:),eps0,F(5,:),NUTP(1,:),eps0p,FP(5,:)); // plot(jj_tai'+ss_tai'/86400,equi'); // // Declarations: // Code: CL__warnDeprecated(); // deprecated function [lhs rhs]=argn(0); if (rhs~=6 & rhs~=3) CL__error("check number of input arguments"); end, sec2rad=(1/3600)*(%pi/180); A = sec2rad*0.00264; B=sec2rad*0.000063; equi =dPsi.*cos(eps0); //equation des equinoxes equi = equi + A*sin(F5) + B*sin(2*F5) ; //rajout des corrections equip=[]; if rhs==6 equip=dPsip.*cos(eps0) - dPsi.*eps0p.*sin(eps0); equip = equip + A*F5p.*cos(F5) + 2*B*F5p.*cos(2*F5); end endfunction