Examples (radar) » History » Version 46

BIDON, Stéphanie, 12/18/2019 10:25 AM

1 1 BIDON, Stéphanie
h1. Examples (radar)
2 1 BIDON, Stéphanie
3 1 BIDON, Stéphanie
Hereafter you will find : 
4 1 BIDON, Stéphanie
* experimental data set that were obtained with SDR-radar systems;
5 1 BIDON, Stéphanie
* processing output examples.
6 1 BIDON, Stéphanie
7 22 BIDON, Stéphanie
h2. Experimental radar data set from SDR-KIT 2400AD2 Ancortek 
8 1 BIDON, Stéphanie
9 1 BIDON, Stéphanie
Useful information about the SDR-KIT 2400AD2 Ancortek can be found at http://ancortek.com/
10 16 ROQUE, Damien
!{width:150px}resized-im2-radar.jpg! !{width:150px}resized-im1-radar-screen.jpg!
11 19 BIDON, Stéphanie
IQ data are recorded in MAT-file and can be read with the Matlab code attachment:"readdata_radar2400AD2.m"
12 44 BIDON, Stéphanie
IQ imbalance processing is likely to be needed.
13 1 BIDON, Stéphanie
14 1 BIDON, Stéphanie
table(centered).
15 31 BIDON, Stéphanie
|=. Data file |=. Waveform|=. Carrier frequency (GHz)|=. Bandwidth (GHz)|=. PRF (ms)|=. Samples per sweep (-)|=.Scenario description|
16 1 BIDON, Stéphanie
| attachment:"2017-02-09-10-34-32.mat"| LFMCW| 25| 2|1 | 128| RC car receding in corridor (non moving environment)|
17 31 BIDON, Stéphanie
||||||||
18 27 BIDON, Stéphanie
| attachment:"2017-07-27-16-57-05.mat"| LFMCW| 24.75| 1.5|4 | 128| No target, corridor with plants on ground in range-gate ca. 20-30 with hidden fan creating a windy environment|
19 27 BIDON, Stéphanie
| attachment:"2017-07-27-17-01-31.mat"| LFMCW| 24.75| 1.5|4 | 128| No target, corridor with plants on ground in range-gate ca. 20-30 with hidden fan off|
20 1 BIDON, Stéphanie
| attachment:"2017-07-27-17-07-46.mat"| LFMCW| 24.75| 1.5|4 | 128| RC car receding-closing in corridor with plants on ground in range-gate ca. 20-30 with hidden fan creating a windy environment 
21 28 BIDON, Stéphanie
attachment:"VID_20170727_170631_forge.mp4"|
22 31 BIDON, Stéphanie
||||||||
23 29 BIDON, Stéphanie
| attachment:"2017-07-27-13-57-54.mat"| LFMCW| 25|2|4|256| No target, corridor with plants on ground in range-gate ca. 54-82 with hidden fan creating a windy environment|
24 29 BIDON, Stéphanie
| attachment:"2017-07-27-14-05-00.mat"| LFMCW| 25|2|4|256| No target, corridor with plants on ground in range-gate ca. 54-82 with hidden fan off|
25 29 BIDON, Stéphanie
| attachment:"2017-07-27-13-42-41.mat"| LFMCW| 24.75| 1.5|4 | 128| RC car receding-closing in corridor with plants on ground in range-gate ca. 54-82 with hidden fan creating a windy environment 
26 29 BIDON, Stéphanie
attachment:"VID_20170727_134114_forge.mp4"|
27 8 BIDON, Stéphanie
28 45 BIDON, Stéphanie
h2. Examples of processing outputs
29 8 BIDON, Stéphanie
30 8 BIDON, Stéphanie
h3. Deramping processing
31 1 BIDON, Stéphanie
32 45 BIDON, Stéphanie
(section in construction)
33 45 BIDON, Stéphanie
34 8 BIDON, Stéphanie
h3. Doppler processing
35 1 BIDON, Stéphanie
36 45 BIDON, Stéphanie
(section in construction)
37 45 BIDON, Stéphanie
38 1 BIDON, Stéphanie
h3. Widedand processing
39 1 BIDON, Stéphanie
40 45 BIDON, Stéphanie
* Processing outputs of Bayesian sparse representation techniques [BidTAES2019].
41 45 BIDON, Stéphanie
In these figures, diffuse clutter is present at the selected range gates. The RC car is receding with a velocity approximately equal to $-v_a$.
42 46 BIDON, Stéphanie
The target is well estimated in the blind velocity with the sparse technique AROFF that jointly estimate the diffuse clutter and the target with its off-grid. In addition, only a few and low false estimations arise with AROFF unlike the 3 other sparse techniques.
43 45 BIDON, Stéphanie
44 45 BIDON, Stéphanie
|=. Outputs| Scenario|
45 45 BIDON, Stéphanie
|!{width:700px}movie-ssr-20170727134241.gif!|
46 45 BIDON, Stéphanie
dataset: 2017-07-27-13-42-41.mat
47 45 BIDON, Stéphanie
transparent background: coherent summation for wideband radar
48 45 BIDON, Stéphanie
diamond: output of sparse representation
49 45 BIDON, Stéphanie
* WON sparse technique assumes white noise and on-grid targets.
50 45 BIDON, Stéphanie
* WOFF sparse technique assumes white noise and off-grid targets.
51 45 BIDON, Stéphanie
* ARON sparse technique assumes autoregressive-colored noise and on-grid targets.
52 45 BIDON, Stéphanie
* AROFF sparse technique assumes autoregressive-colored noise and off-grid targets.
53 45 BIDON, Stéphanie
* The MMSE (Minimum Mean Square Error) estimator of target scene is depicted. 
54 45 BIDON, Stéphanie
$v_a$ is the ambiguous velocity|
55 45 BIDON, Stéphanie
56 45 BIDON, Stéphanie
h2. References
57 45 BIDON, Stéphanie
58 45 BIDON, Stéphanie
* [BidTAES2019] Stéphanie Bidon, Marie Lasserre, and François Le Chevalier. Unambiguous sparse recovery of migrating targets with a robustified Bayesian model. IEEE Transactions on Aerospace and Electronic Systems, 55(1) :108–123, Feb 2019. http://oatao.univ-toulouse.fr/22968/