Equipment inventory » History » Version 10

DE GENDRE, Raphaëlle, 03/22/2016 10:52 PM

1 1 DE GENDRE, Raphaëlle
h1. Equipment inventory
2 1 DE GENDRE, Raphaëlle
3 1 DE GENDRE, Raphaëlle
4 6 DE GENDRE, Raphaëlle
The equipment we will be using is very similar to the one used in the project by previous student.Here is the recap:
5 7 DE GENDRE, Raphaëlle
* Structure
6 7 DE GENDRE, Raphaëlle
> * Cubesat 2U Chassis wall assembly
7 7 DE GENDRE, Raphaëlle
* Electronics
8 6 DE GENDRE, Raphaëlle
> * Development board: 710-00297
9 6 DE GENDRE, Raphaëlle
> * Pluggable Socketed Processor Module D, for dsPIC33FJ256GP710: 710-00608
10 6 DE GENDRE, Raphaëlle
> * Motherboard (MB): 710-00484
11 6 DE GENDRE, Raphaëlle
> * Pluggable Processor Module D2 with Microchip® dsPIC33FJ256GP710: 710-00528
12 6 DE GENDRE, Raphaëlle
> * Protoboard Kit: 711-00303
13 6 DE GENDRE, Raphaëlle
> * DC Sources: +5Vdc, +9Vdc
14 6 DE GENDRE, Raphaëlle
> * RF 434 Mhz PLL 2-FSK Transmitter from Aurel: TX-4MAVPF10
15 1 DE GENDRE, Raphaëlle
* Software
16 6 DE GENDRE, Raphaëlle
> * MPLAB X IDE from Microchip
17 6 DE GENDRE, Raphaëlle
> * MPLAB XC16 compiler for 16 bits PIC processors, from Microchip
18 6 DE GENDRE, Raphaëlle
> * Salvos RTOS
19 6 DE GENDRE, Raphaëlle
> * Cubesat Kit Software drivers
20 6 DE GENDRE, Raphaëlle
> * Processor dsPIC33FJ256GP710 drivers
21 6 DE GENDRE, Raphaëlle
> * Drivers for EFFS-THIN Flash File System for SD Cards (from HCC-Embedded)
22 1 DE GENDRE, Raphaëlle
* Tools
23 6 DE GENDRE, Raphaëlle
> * ICD3 In Circuit Debugger from Microchip
24 6 DE GENDRE, Raphaëlle
> * PC work station with Linux and PC with Windows
25 6 DE GENDRE, Raphaëlle
> * Electronic components: resistors, leds, wires, breadboards, etc.
26 6 DE GENDRE, Raphaëlle
> * Soldering station
27 6 DE GENDRE, Raphaëlle
> * Interface cables: serial SUB-D 9, USB A/B, etc.
28 6 DE GENDRE, Raphaëlle
> * Blue anti-static mat with wrist straps and cords
29 1 DE GENDRE, Raphaëlle
30 8 DE GENDRE, Raphaëlle
*Cubesat kit*
31 8 DE GENDRE, Raphaëlle
32 4 DE GENDRE, Raphaëlle
!{width:50%}cubesat.jpg!
33 1 DE GENDRE, Raphaëlle
34 10 DE GENDRE, Raphaëlle
35 1 DE GENDRE, Raphaëlle
The CubeSat Kit is composed of an aluminum chassis of 2U volume, compliant with the Cubesat standard. It contains an electronic board at the bottom, where the microcontroller is placed. Other modules can be stacked one on top of the other. The interface between the boards is done through the CubeSat Kit Bus, composed of 104 pins connected to the microcontroller’s I/O pins, Serial Port, and Power Supply.
36 1 DE GENDRE, Raphaëlle
Other interfaces present in the main module are an USB port and a Power Supply connector. Also, as required by the Cubesat standard, there is a Remove Before Flight pin, and Launch switches.
37 1 DE GENDRE, Raphaëlle
The microcontroller present in the main module is a Microchip dsPIC33FJ256GP710 , a 16-bit general purpose digital signal controller, with an industrial temperature range of operation (-40ºC to +85ºC) and low power consumption. The code can be programmed in C, and then compiled into a set of optimized instructions. The MCU can be programmed with Pumpkin´s Salvo Real-Time Operating System (RTOS) to facilitate rapid software development.
38 1 DE GENDRE, Raphaëlle
The kit does not include a power unit, nor any communication system (RF transmitter and antenna); this modules vary from mission to mission, and must be supplied by the user.
39 1 DE GENDRE, Raphaëlle
40 10 DE GENDRE, Raphaëlle
41 8 DE GENDRE, Raphaëlle
*Development board*
42 8 DE GENDRE, Raphaëlle
43 1 DE GENDRE, Raphaëlle
!devboard.jpg!
44 8 DE GENDRE, Raphaëlle
45 10 DE GENDRE, Raphaëlle
46 1 DE GENDRE, Raphaëlle
The Development Board (DB) is a single board computer development platform, used to perform CubeSat Kit training, development, debugging and testing.
47 1 DE GENDRE, Raphaëlle
It contains an open architecture, capable of accepting different processor modules; a power supply unit. It can be easily interfaced with other boards, with two stackable 104-pin CubeSat Kit Bus, connected to the MCU; and with a computer through a RS-232 port and an USB port, connected to the MCU UART1 and UART2. The USB port uses a FTDI serial-to-USB converter.
48 1 DE GENDRE, Raphaëlle
There is also present a MMC/SD card socket for mass storage, and an bus compatible with MHX transceiver. The DB includes Separation and Remove Before Flight switches.
49 1 DE GENDRE, Raphaëlle
50 8 DE GENDRE, Raphaëlle
*RF Transmitter*
51 8 DE GENDRE, Raphaëlle
52 10 DE GENDRE, Raphaëlle
53 5 DE GENDRE, Raphaëlle
!rftransmitter.png!
54 8 DE GENDRE, Raphaëlle
55 10 DE GENDRE, Raphaëlle
56 1 DE GENDRE, Raphaëlle
The transmitter used for the RF communication is a TX-4MAVPF10 fabricated by Aurel Wireless. It is a 434 MHz PLL 2FSK Transmitter in compliance with European Normative. The emitted power is 10dBm maximum, and the deviation between the ON and OFF frequencies is +/- 35 KHz.
57 1 DE GENDRE, Raphaëlle
58 10 DE GENDRE, Raphaëlle
59 1 DE GENDRE, Raphaëlle
	
60 9 DE GENDRE, Raphaëlle
*Thermocouple*
61 9 DE GENDRE, Raphaëlle
62 10 DE GENDRE, Raphaëlle
63 10 DE GENDRE, Raphaëlle
64 5 DE GENDRE, Raphaëlle
!thermocouple.jpg!
65 10 DE GENDRE, Raphaëlle
66 10 DE GENDRE, Raphaëlle
67 10 DE GENDRE, Raphaëlle
68 10 DE GENDRE, Raphaëlle
The thermocouple that we will be using is a thermocouple of class K 2MPTFE. It is composed of Chromel (nickel + chrome) / Alumel (nickel + aluminium (5 %) + silicium).This kind of thermocouple is the most widely used because it is very affordable. It has a sensitivity of 41 µV/°C and goes theoritically from -270 à 1372°C. It actually works continuously from 0 °C to 1 100 °C and 	intermittently from -180 °C to 1 200 °C. It is pretty resistant to radiation, which is very important when you want to send the material to space but it lacks of stability